Question ONE:

(50×1.5=75 Marks, 60 min)

Choose only <u>ONE</u> correct answer and mark in the answer sheet:

- 1) Two examples of substrate level phosphorylation in glucose metabolism involve the following substrates:
 - a) 1,3 bisphosphoglycerate and phosphoenol pyruvate
 - b) Glucose-6 phosphate and Fructo-6-phosphate
 - c) 3 phosphoglyceraldehyde and phosphoenolpyruvate
 - d) 1,3 diphosphoglycerate and 2-phosphoglycerate
- 2) Conversion of glucose to glucose-6- phosphate is by:
 - a) Hexokinase
 - b) PFK-1
 - c) Phosphatase
 - d) Glucose-6-phosphate dehydrogenase
- 3) Dihydroxyacetone phosphate and glyceraldehyde-3-phosphate are intercoverted by:
 - a) Fructose isomerase
 - b) Triose phosphate isomerase
 - c) Triose reductase
 - d) Dihydroxyacetone oxidase

4) Lactic acid formation from glucose is termed as:

- a) Aerobic glycolysis c) Oxidation in brain
- b) Oxidative phosphorylation d) Anaerobic glycolysis
- 5) The reaction catalyzed by phosphofructokinase-1 uses the following substrate:
 - a) Fructose-6-phosphate
 - b) Fructose-1-phosphate
 - c) Fructose-1,6-biphosphate
 - d) Fructose-2,6-biphosphate

Department of Biochemistry, Faculty of Pharmacy, Tanta University, Biochemistry-2 Final Exam, Second semester, 2nd year pharmacy student,15th June 2021

6)	AT ph	P is 'wasted' in glycolysis osphoglycerate kinase is by	in RBCs as the reaction catalyzed							
	a)	Phosphoglucomutase								
	b)	Phosphobexoisomerase								
	, c)	Phosphofructokinase								
	d)	Phosphoenol pyruvate carboxykinase								
7)	As	specific inhibitor for pyruvate dehydrogenase complex is:								
	a)	Arsenite	c) Ca ⁺²							
	b)	Citrate	d) Cyanide							
8)	In g	glycogenolysis, the enzyme r	equired is:							
	a)	Phosphorylase	c) Branching enzyme							
	b)	Synthase	d)Thiokinase							
9)	Fo	r glycogenesis, Glucose shoul	d be activated into:							
	a)	Glucuronic acid	c) Pyruvic acid							
	b)	UDP- glucose	d) Sorbitol							
10) Fluoride inhibits and arrests glycolysis.										
	a)	Glyceraldehyde-3-phosphate	e dehydrogenase							
	b)	Aconitase c) Enolose	d) Succinate dehydrogenase							
11)	Glycogenin is:								
	a)	Uncoupler of oxidative phose	phorylation							
	b)	Polymer of glycogen molecules								
	c)	Protein primer for glycogen synthesis								
	d)	 Intermediate in glycogen breakdown 								
12)	Conversion of alanine to carbohydrate is termed:								
	a)	Glycogenesis	c) Gluconeogenesis							
	b)	Glycogenolysis	d) Photosynthesis							
13) Reduced glutathione functions in RBCs to:										
	a)	Produce NADPH								
	b)	Reduce myoglobin to hemoglobin								
	c)	Produce NADH								
	d)	Reduce oxidizing agents such as H ₂ O ₂								

by

14) In glycolysis, 2-phosphoglycer	rate is converted by enclase to:								
a) Phospho end pyruvate									
a) Friospilo erior pyruvate									
b) Elloi pyruvale									
 c) DI Nydroxy acetone phosphate (DHAP) d) 1.2 bioghash ash ash ashashashashashashashashashashashashasha									
() 1,5 bisphosphogrycerate	a) 1,3 disphosphogiycerate								
(15) Human body can get pentoses	5) Human body can get pentoses from:								
a) Giycolytic pathway	d) UNAD about								
b) TCA cycle	d) HMP shunt								
16) Denydrogenase enzymes of	the pentose phosphate pathway are								
dependent on									
a) NAD+ b) NADP+	c)FAD d) FMN								
17) Glycogen synthase catalyzes t	he formation of:								
a) α –1, 4-Glycosidic bonds									
b) α –1, 6-Glycosidic bonds									
c) β –1, 4-Glycosidic bonds									
d) β –1, 6-Glycosidic bonds									
18) An aneplerotic reaction	which sustains the availability of								
oxaloacetate is the carboxylation	ו of:								
a) Glutamate	c) Pyruvate								
b) Citrate d) Succinate									
19) <i>De novo</i> synthesis of fatty aci	ds occurs in:								
a) Mitochondria	c) Nucleus								
b) Cytosol d) Lysosomes									
20) Excessive intake of ethanol in	creases the ratio:								
a) NADH / NAD⁺	c) NAD⁺/ NADH								
b) FADH ₂ / FAD	d) FAD / FADH2								
21) Adipose tissue lacks:									
a) Hormone-sensitive lipase									
b) Glycerol kinase									
c) cAMP-dependent protein kinase									
d) Glycerol-3-phosphate dehydrogenase									

Department of Biochemistry, Faculty of Pharmacy, Tanta University, Biochemistry-2 Final Exam, Second semester, 2nd year pharmacy student,15th June 2021								
22) Carnitine is required	d for the transport of:							
a) Triglycerides out of	a) Triglycerides out of liver							
b) Triglycerides into m	b) Triglycerides into mitochondria							
c) Short chain fatty aci	c) Short chain fatty acids into mitochondria							
d) Long chain fatty acid	d) Long chain fatty acids into mitochondria							
23) Net ATP generation	on complete oxidation of palmitic acid is:							
a) 129	c) 131							
b) 146	d) 148							
24) Human desaturase	enzyme system cannot introduce a double bond							
in a fatty acid beyond:								
a) Carbon 9	c) Carbon 6							
b) Carbon 5	d) Carbon 3							
25) The release of free	fatty acids from adipose tissue is increased by all							
of the following <u>EXCEP</u>	<u>T</u> :							
a) Glucagon	c) Epinephrine							
b) ACTH	d) Insulin							
26) β -oxidation of odd-	chain fatty acids results in final cleavage products							
propionyl CoA+ Acetyl	CoAl, propionyl CoA is then converted into:							
a) Pyruvate b) Fur	narate c) Succinyl CoA d) L-malate							
27) Malonyl CoA is a di	rect inhibitor of which enzyme?							
a) Carnitine palmitoyl	transferase-l							
b) Carnitine palmitoyl transferase-II								
c) Translocase								
d) Thiokinase								
28) Reactions of fatty acid synthesis include:								
a) Condensation \rightarrow hydrogenation \rightarrow Hydration \rightarrow Oxidation								
b) Condensation \rightarrow Reduction \rightarrow Dehydration \rightarrow Reduction								
c) Oxidation \rightarrow Reduction \rightarrow Dehydration \rightarrow Reduction								
d) Condensation \rightarrow Reduction \rightarrow Dehydration \rightarrow Oxidation								

29) Pyruvate dehydrogenase complex and α-ketoglutarate dehydrogenase complex require the following coenzymes for their oxidative decarboxylation:

- a) CoASH and Lipoic acid c) NAD⁺ and FAD
- b) CoASH and TPP d) CoASH, TPP, NAD⁺, FAD, Lipoate

30) During starvation, ketone bodies are used as a fuel by which of the following?

- a) Erythrocytes c) Brain
- b) Liver d) All of these
- 31) An enzyme required for the synthesis of ketone bodies as well as cholesterol is:
 - a) Acetyl CoA carboxylase c) HMG CoA synthetase
 - b) HMG CoA reductase d) HMG CoA lyase
- 32) Regarding fatty acid synthesis, the transfer of acetyl portion of mitochondrial acetyl CoA to the cytosol is mediated by:
 - a) Carnitine shuttle
 - b) Citrate-malate-pyruvate shuttle
 - c) Malate aspartate shuttle
 - d) Glycerol phosphate shuttle
- **33)** Bioynthesis of arachidonic acid in human is from:
 - a) Palmitic acid b) Stearic acid c) Oleic acid d) Linoleic acid
- 34) The conversion of stearic acid to oleic acid is catalyzed by:
 - a) Fatty acid synthase c)Desaturase
 - b) Elongase d)Thiophorase

35) All long chain fatty acids with even number of carbon atoms are oxidized to _____ by β-oxidation.

- a) CO2 c) Propionic acid
- b) Acetic acid d) Acetyl CoA

36)	All of	the foll	owing are	correct re	gardin	g HMG-	CoA redu	ctase	
EXCEPT:									
a)	The enzyme is active in the dephosphorylated form								
b)	Inhibited by cholesterol								
c)	Its activity increased by glucagon								
d)	d) Its activity is stimulated by thyroid hormone								
37)	Which	of the	following	enzymes	is u	sed for	malonyl	СоА	
bi	biosynthesis?								
a)	a) Malic enzyme				c) CoASH and ATPase				
b)	Acetyl C	CoA carb	oxylase	d) CPT-1					
38)	Which	of the	following	enzymes	s is	controllir	ng choles	terol	
biosynthesis?									
a)	a) HMG-CoA lyase			c) HMG-CoA synthase					
b) HMG-CoA reductase				d) Both b & c					
39)	9) Acyl carrier protein is involved in the biosynthesis of:								
a)	Protein	b)	Glycogen	c) Fat	ty acid	s d) (Cholestero	I	
		<i>c c</i>							

- 40) Which of the following compounds is directly inhibiting HMG CoA reductase?
 - a) Statins c) Aspirin
 - b) Tyrosine d) Acetoacetyl CoA
- 41) The amino acids whose skeletons generate pyruvate or oxaloacetate or other intermediate of TCA cycle are termed
 - a) Glucogenic c) Both ketogenic and glucogenic
 - b) Ketogenic d) Lipogenic

42) The enzyme which combines NH₃ with glutamate (glu) to form glutamine is called:

- a) Glutamine synthetase c) Glutaminase
- b) Glutamate dehydrogenase d) Glutamate oxidase
- 43) Serine is metabolized to pyruvate by:

a) Serine dehydratase

- c) Serine dehydrogenase
- b) Serine oxidase d) Serine hydroxylase

C00-

c) Homocysteine

HOH

NAD(P

44) The enzyme that catalyzes reaction (A) is called.....

- a) Glutamate dehydrogenase
- b) L-aminoacid oxidase
- c) Transaminase
- d) Glutamate synthase

45) Methionine synthase catalyzes formation of methionine from......

- a) Cysteine
- b) Cystathionine b) S-adenosylmethionine

46) Elevated plasma level of homocysteine is correlated with the severity

- of
- a) Coronary artery diseaseb) Kidney diseasec) Liver diseased) GIT disease

47) All of the following statements about phenylketonuria are correct EXCEPT:

- a) It is treated by the addition of Tyr and restriction of Phe from diet
- b) It could lead to mental retardation if untreated.
- c) It is characterized by low urinary excretion of phenylpyruvate
- d) It is characterized by deficiency of pigmentation

48) All of the following are correct about signals that enter the cell EXCEPT:

- a) They bind to intracellular receptors
- b) They activate the transcription of regulated genes
- c) They activate a phosphorylation cascade and release second messengers
- d) They are small lipophilic molecules

49) Which of the following is type of Insulin receptor:

- a) Tyrosine kinases receptor c) G-proteins coupled receptor
- b) Ion channel coupled receptor b) Intracellular receptor

50) Which of the following signals binds to G-proteins coupled receptors:

a) Steroids b) Vitamin D c) Retinoic acid d) Glucagon

Question TWO:

I. Based on the following illustrated diagram answer the related questions? (11x2=22 Marks, 15 min)

II. Match each of the following metabolic diseases in column (A) with the corresponding enzyme deficiency/defect in column (B)?

		_		
			#	(B)
()		A	Homogentisic acid oxidase
1	\		P	Tyrosipaso

(8x2=16 Marks, 10 min)

#	(A)				#	(B)
1	Phenylketonuria	()		A	Homogentisic acid oxidase
2	Alkaptonuria	()		B	Tyrosinase
3	Albinism	()		С	Ornithine transcarbamylase
4	Homocystinuria	()		D	Branched-chain alpha-
5	von Gierke's	()			keto acid dehydrogenase complex
					E	Phenylalanine hydroxylase
6	Maple syrup urine disease	()		F	Phosphofructokinase
					G	Cystathionine β-synthase
7	Hereditary hyperammonemia ()				Н	Glucose-6-phosphate dehydrogenase
					Ι	Glucose-6-phosphatase
8	Galactosemia	()		J	Galactose-1-phosphate uridyl transferase

Question THREE:

I- Answer the questions about the following biochemical reaction:

(7 Marks, 10 min)

II- Write full chemical equations or sketches for each of the following: (3×10=30 Marks, 25 min)

1. Energy generation phase of glycolysis

2- Citric acid cycle (Sketch only)

3- Ketogenesis

Good luck